Date: \qquad

Lesson 8: Linear Functions Notes

Objective:

Definitions/Conditions

Linear Equations:
Conditions to be a Linear Equation: The following must be true:
1.) x and y do not have \qquad .
2.) The variables x and y are not in the \qquad .
3.) x and y do not have any other \qquad .

Standard Form: $\quad \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{y}=\boldsymbol{C}$

Standard Form Examples

Determine whether each of the following equations are linear. If they are, put them in standard form. If not, explain why.
1.) $6 x y+y=14$
2.) $3 x^{2}+4 y=-17$
3.) $2 y=10-7 x$
4.) $\frac{1}{3} y=-1$
5.) $2 x=-12+6 y$
6.) $-\frac{1}{2} x+3 y=4$

Intercepts

The x - coordinate of the point at which the graph of an equation crosses the x-axis is an
\qquad .

Written as an ordered pair: \qquad

The y-coordinate of the point which the graph of an equation crosses the y-axis is an
\qquad .

Written as an ordered pair: \qquad

Values of x which $f(x)=0$ are called \qquad of the function f. The zero of a linear function is the same as the x-intercept.

Intercept Examples

Find the x and y-intercepts algebraically. Then graph using the intercepts.

1. $3 x+2 y=12$

2. $-x+y=-5$

3. John is trying to pay off his car. Each month he pays $\$ 200$. He needs to pay off his $\$ 2000$ loan. Use the graph below to identify the intercepts. Then, explain what each intercept means.

